- kernel equivalence
- мат.ядерная эквивалентность
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Kernel (algebra) — In the various branches of mathematics that fall under the heading of abstract algebra, the kernel of a homomorphism measures the degree to which the homomorphism fails to be injective. An important special case is the kernel of a matrix, also… … Wikipedia
Equivalence relation — In mathematics, an equivalence relation is a binary relation between two elements of a set which groups them together as being equivalent in some way. Let a , b , and c be arbitrary elements of some set X . Then a b or a ≡ b denotes that a is… … Wikipedia
Kernel (set theory) — In mathematics, the kernel of a function f may be taken to be either*the equivalence relation on the function s domain that roughly expresses the idea of equivalent as far as the function f can tell , or *the corresponding partition of the domain … Wikipedia
Equivalence class — This article is about equivalency in mathematics; for equivalency in music see equivalence class (music). In mathematics, given a set X and an equivalence relation on X, the equivalence class of an element a in X is the subset of all elements in… … Wikipedia
Positive definite kernel — In operator theory, a positive definite kernel is a generalization of a positive matrix. Definition Let :{ H n } {n in {mathbb Z be a sequence of (complex) Hilbert spaces and :mathcal{L}(H i, H j)be the bounded operators from Hi to Hj . A map A… … Wikipedia
Regular category — In category theory, a regular category is a category with finite limits and coequalizers of kernel pairs, satisfying certain exactness conditions. In that way, regular categories recapture many properties of abelian categories, like the existence … Wikipedia
Spectrum of a C*-algebra — The spectrum of a C* algebra or dual of a C* algebra A, denoted Â, is the set of unitary equivalence classes of irreducible * representations of A. A * representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed… … Wikipedia
BRST quantization — In theoretical physics, BRST quantization (where the BRST refers to Becchi, Rouet, Stora and Tyutin) is a relatively rigorous mathematical approach to quantizing a field theory with a gauge symmetry. Quantization rules in earlier QFT frameworks… … Wikipedia
Congruence relation — See congruence (geometry) for the term as used in elementary geometry. In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group, ring, or vector space) that is… … Wikipedia
linguistics — /ling gwis tiks/, n. (used with a sing. v.) the science of language, including phonetics, phonology, morphology, syntax, semantics, pragmatics, and historical linguistics. [1850 55; see LINGUISTIC, ICS] * * * Study of the nature and structure of… … Universalium
Adjoint functors — Adjunction redirects here. For the construction in field theory, see Adjunction (field theory). For the construction in topology, see Adjunction space. In mathematics, adjoint functors are pairs of functors which stand in a particular… … Wikipedia